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A finite element approach is described to solve the time- dependent Hartree-Fock equation 
of atoms in the presence of time-dependent electromagnetic fields. Time-dependent energy 
changes, ionization rates and high order nonlinear optical polarizabilities, X2~+l (n >i 0) for the 
atoms H and He have been calculated. The finite element method is shown to be easily adapta- 
ble to treat intense short pulses and includes automatically both bound and continuum 
electronic states. 

1. I n t r o d u c t i o n  

Time-dependent  quantum mechanics involves solving the t ime-dependent  
Schr6dinger equation (TDSE) which is a parabolic partial differential equat ion 
(PPDE). TDSEs occur naturally whenever one deals with t ime-dependent  pertur- 
bat ion such as laser fields. Thus present laser technology allows one to subject 
a toms and molecules to increasing radiat ion intensities so that  eventually perturba-  
tion theory  breaks down [1,2]. Since the atomic unit of  the electronic field e / a  2 cor- 
responds to a field intensity of  3.5 x 1016 W / c m  2 ( W = w a t t s )  current  fields 
approaching 1014 W//cm 2 will introduce nonperturbat ive effects such as above 
threshold ionization [3], laser-induced avoided crossings of  molecular  electronic 
potential  curves [4, 5]. 

One of  the fundamenta l  difficulties in describing nonperturbat ive t ime-depen- 
dent phenomena  is the proper inclusion simultaneously of  bound and cont inuum 
electronic states. In the case of  the H atom, successful numerical  calculations have 
been carried out  by solving the TDSE using implicit finite difference (FD) methods  
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in view of the local nature of the potential in the problem [6,7]. Extension of these 
numerical methods to multielectron problems has proved to be difficult due to the 
nonlocal nature of the exchange interaction. 

Another approach which can handle nonlocal potentials is a basis set expan- 
sion, with sufficient flexibility to enable one to span localized bound state functions 
to highly delocalized free electron functions. Such flexible basis sets can be found 
in finite element (FE) methods which are local in nature. It is well known that sim- 
ple FD and FE methods result often in identical approximations [8,9]. Recent appli- 
cations of FE methods to time independent quantum chemistry has shown that 
these methods are well suited to treating nonlocal potentials such as the exchange 
potential in Hartree-Fock (HF) methods for atoms [10,11] and recently molecules 
[12-14]. In particular, taking advantage of expansion in terms of Legendre polyno- 
mials onto elements, one can obtain high accuracy due to the optimal properties 
of these polynomials: Legendre polynomials are the best approximation of any 
function with respect to its norm in a finite domain [15]. 

Preliminary calculations of the time-dependent solution of the H atom excited 
by an intense short laser pulse using FE methods [16] have been shown to compare 
extremely well with previous FD methods. The latter calculations are basis set 
free, whereas the FE method involves local basis sets. Current development in 
time-independent basis-free quantum chemistry have shown these to be very pro- 
mising [17,18]. Such methods have not yet been developed for time-dependent pro- 
blems. In the present paper we describe the local basis FE method as applied to 
the solution of the time-dependent Hartree-Fock equation (TDHF) of atoms in the 
presence of time-dependent perturbations. Our test case will be the H and He 
atoms. We are currently extending the method to multielectron atoms and mole- 
cules. 

2. Theory 

The time-dependent Schr6dinger equation (TDSE) is of the general form 

i O n ( r ,  t ) =  H ( r , t ) ~ ( r , t ) ,  (1) 

where H is the total time-dependent Hamiltonian ((h = 1)). Putting a completely 
antisymmetrized product wave function ~5(r, t) into eq. (1), the usual TDHF equa- 
tion is obtained [6]: 

i ~ P i ( r i ,  t) = (hi + V~l)ff'i(ri, t) ,  (2) 

where the ~Pi(ri, t) are the time dependent orbitals. In linearly polarized laser fields 
and using polar coordinates, the external electromagnetic perturbation V el is writ- 
ten as 
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V el= Eo(t )rcos(O)s in(wt)= A(r , t )cos(O) ,  (3) 

Eo(t) is called the pulse envelope for an electromagnetic field of frequency w in the 
dipole approximation. 

The single-electron Hamiltonian hi is defined as 

hi = hio + Ji , (4) 

with a core Hamiltonian h;0, 

1 ( 0 2  2 0 )  L 2 Z (5) 
h i o = - ~  -~r2+r-~r +2r--5- r , 

and time-dependent Coulomb integrals J/(1, t), 

Ji(1,t)gti(1, t) = ~ f kV](2, t)~Pj(2, t) dV2gti(1,t) " (6) 
j J rij 

Since we limit ourselves to He, we do not need exchange integrals in the case of 
Sz = 0, although as noted below, the final equations over basis sets appear similar 
to the exchange case. We note that the Coulomb integrals become time dependent 
as opposed to standard Hartree-Fock theory. In the case of the He atom, n in eq. 
(6) is equal to 1. The one-electron wave function in eq. (2) can be expanded in terms 
of radial and spherical harmonic functions: 

/max 
~Pi(1, t) = ~ Rl(r,t)Yl(O, dp), (7) 

l 

where/max is the maximum state number used to expand wave functions. For line- 
arly polarized light, mt = 0 in eq. (7) and is suppressed in the notation of the Y's. 
Substituting eq. (7) into eq. (2) we obtain the coupled equations 

/max . 0  /ma~ 
( hio n t- Ji -Jr- V el) Z Rl(r, t)Y,(0, qS) = 1 N  ~ Rt(r, t)Yt(O, 0) .  

l 1 

(8) 

Defining 

Jll,( t) = (I1l,(0, q~)lJi(1, t)l Yt(O, cb) ) , (9) 

and using the orthogonality relation ( Yj[ Yt,) = 611,, eq. (8) is transformed after sim- 
ple manipulation into 

/ma~ . 0 Rt (r , t ) ,  (10) hio(l)Rl(r,t) + ~_,(Jtt, + Gll,)Re(r,t) = 1-~ 
l' 

where Gtt, = A(r, t) x G~, t, and 
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G b, = < r-tl cos (0) 1 rt, > 

l if l ' +  1 = l ,  
= [(2l + 1)(2l' + 1)] 1/2 

l + l  i f l ' - I  = l .  
[(2l + 1)(21'+ 1)] 1/2 

(11) 

By choosing a finite element basis set for the radial functions, 

R(r, t) = X(r)C(t),  (12) 

where X(r) is the vector for the FE basis set, and C(t) is the matrix for the time- 
dependent coefficients. Derivativing the eq. (12) with respect to time, one obtains 

On(r, t) _ X(r) OC(t) (13) 
Ot Ot ' 

Substituting eqs. (12) and (13) into eq. (10), we have 

tma~ 0 
hio(l)X(r)Cl(t) + ~_~(Jll' + Gll,)X(r)el,(t) = iX(r) e l ( t ) .  (14) 

p 

Left multiple X + in eq. (14) and defining 

Bo(l) = S-1X+hi0(l)X, (15) 

where S -1 is the inverse of the FE overlap matrix X+X between the FE basis sets, 
hio (l) is defined in eq. (5), and X+hi0 (I)X is a Hamiltonian matrix with respect to the 
FE basis set. For the H atom, X+hio(l)X is a time-dependent matrix involving 
time-independent kinetic energy and Coulomb integrals over the FEs but a time- 
dependent radiation interaction matrix, eq. (3). For the He atom, the Coulomb 
repulsion becomes time dependent. Substituting eq. (15) into eq. (14), we obtain the 
following equation: 

lma~ ~t Bo(l)Ct(t) + Z(Js j t , ( t )  + as,ll,(t))et,(t) = i e l ( t ) ,  (16) 
P 

where Js3t' = S-1X+Jtt, X and G,3t, = S-IX+Gtt, X. Equation (16) can be rewritten 
in matrix form as 

B0(0) + Js,oo js,ol + Gs,ol . . .  Js,on '~ 
Js,lO +. Gs, lO B0(1) .+ Js, ll ...... Js, 

J \ Js,nO Js,nl . . .  Bo(gl) + Ys,nn If°/(i°/ C1 Gq El 
=i  X 

n n 

(17) 

Note that because of radiative selection rules AI = 4-1, the matrix elements of Gs 
occupy only the first off-diagonal positions, i.e., Gs is a tridiagonal matrix. 
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Using a time-dependent basis set, based on Legendre polynomials, the FE set 
which has the virtue of being flexible and highly accurate, one solves the ordinary 
differential equations (ODE) (17), iteratively with appropriate initial condition, 
i.e. k~(r, 0) is the ground state. The time-dependent coefficient vector C(t) is propa- 
gated successively by a fourth order Taylor series expansion, 

cn+l = ( 1 -  iAtA _ 1At2A 2 + i~At3 A I  3++At4A4) C n , .  (18) 

where A is the Hamiltonian, the left matrix in eq. (17) (a Tchebycheff polynomials 
expansion gave similar results). We emphasize that the FE basis set, due to its flex- 
ibility can represent both bound and continuum states. The final wave function 
after a time t, #(r, t, E(t)) is an implicit function of the electromagnetic field E(t) 
and is next used to calculate the field-induced polarizability. 

The calculation of the new time dependent Coulomb t e r m  Jnm(t) is a key pro- 
blem. We proceed as follows: 

Substituting eq. (7) into eq. (6) we have in the case of He atom (n = 1) 

/max /max [ R~_~(2, t)RK(2, t) 
J;(1, t) = Z Z j YK(2) YL(2) dV2. (19) 

K L r12 

We now expand the time-dependent radial function RL(2, t) in terms of the FE 
basis sets, Xr, with time-dependent coefficients CLr(t), 

n 

RL(2, t ) =  Z CLr(t)X~(2). (20) 
r 

Substituting eq. (20) into eq. (19) the Coulomb term becomes in the FE bases 

Yi(1, t ) =  ~ - ~ Z  C*L~(t)CK~(I) YL(2)Yx(2)dV2. (21) 
K L r s r12 

From eq. (21) one obtains new time-dependent matrix elements: 

4,q(t) = (Xp(1) I¢)(1)lJ/(1 , t)lXq(1)Yt,(1)> (22a) 

o r  

/max n 
JPq(t) = ~ y~ DL~,~(t)(Prlqs), (22b) 

L,K r,s 

with time-dependent density matrix elements 

NLNr C~r(t)CKs(t). (23) DLr,Ks(t) = 2 

This is to be contrasted with time independent HF theory where the D's are time 
independent. IVy and NK are the occupation numbers corresponding to symmetry L 
and K, respectively. The time-independent Coulomb integrals (prlqs) are defined 
a s  



278 H. Yu et al. / The f inite element method. I 

@riqs)= i i XP(I)Xq(1)Xr(2)Xs(2)I YK(2)YL(2)Yt(1)Yt,(I)dVI dYE. (24) 

These are the most general integrals which appear for He. Similar integrals would 
have appeared had we included proper exchange integrals. Clearly all time depen- 
dence is now contained in the density matrix elements, eq. (23). Expanding 1/r12 in 
terms of Legendre polynomials and for a linearly polarized laser field, eq. (3), 
then the integrals (24) become 

o o  

@rlqs > = ~ C~(I,I')C}(K,L)Ra(pqrs), (25) 
A=0 

R~(pqrs) / f Xp(1)Xq(1)Xr(2)Xs(2)~ .(~. r~ = . ~ ,  dr1 dr2, (26) 
r>--" 

f 
l 

C{(i= 1 , 2 ) =  Yt(u) Ym(u)Yn(u)du, 
-1 

(27) 

C{(m,n) =[(2l + 1)(2m + 1)]l/a( - 1)(s - rn) 

n! (2s - 2n)!s! 
X 

(s - Z)!(s- m)!(s-  n)!(2s + 1)! 

(l + w)!(m + n -- w)! 
X--'Z...,(_l)Ww!(l_ w)!(m - n + w)!(n - w)! " × 

W 

The conditions on Ci~(m, n) are [19] 

Ci~(m,n) = ~ Ci~(m,n) if (l + m + n )=even  number and (m + n)>~(m - n ) ;  

[ 0 otherwise, 

(29) 

and 2s = (l + m + n). 
In summary, the T D H F  equations (2) which are coupled nonlinear PPDEs 

have been reduced by use of the FE basis expansion (7), (12) to ordinary differential 
equations, ODEs. 

3. Results  and discussion 

In our previous work [16], we showed that the FE basis successfully gave highly 
accurate energies for the simple H atom. In all our calculations on the He, the atom 
is placed in the center of the sphere with a radius of 100 au. The radius is divided 
into 18 finite elements. The number of basis functions used is 50 and the maximum 
number of states lmax was set at 6. Using these values we obtain a total energy of 
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--77.83 eV with the corresponding orbital energy o f  -24 .96 eV in the initial 
(ground) state of  He atom. This compares very well with the Ha r t r ee -Fock  limit o f  
-77 .87  eV and the true ionization potential of  -24.58 eV of  the He a tom [14]. 
Extending the/max to higher values gave the H F  limit at about/max = 10. 

3.1. ENERGIES AND IONIZATION RATES 

All energies are changed as the wave function is propagated  in time according 
to the scheme (18). In the initial state, the two electrons occupy the same 1 s orbitals 
with opposite spin. These electrons are then excited to various high energy levels 
with time. Therefore  the Coulomb interaction between electrons, as measured by 
the Coulomb integrals (19), depends on time in the case of  He a tom and gets weaker  
as the a tom ionizes. As the interelectronic repulsion becomes weaker,  the orbital 
energy decreases also, f rom -24 .9  to -26 .7  eV, as shown in fig. 1. The decrease of  
the orbital energy with time corresponds to an increase of  the ionization potential  
of  He, making it more  difficult for the a tom to ionize. Oscillations in the orbital 
energy occur with time due to return o f  electron density to the ground state which 
are called Rabi oscillations [16]. 

The variat ion of  the total energy with time is given in fig. 2. It  is clear that  the 
total energy increases with time. The two electrons occupy 1 s orbitals in the initial 
state where the system is most  stable. The electrons then are excited continuously 

I-tOD+I5~-50.W-O~3JLL-6 
- O . g l  

- 0 . 9 2  

- O , 9 3  

i -o.94 
.J 
r 0 . 9 5  

- 0 . ~  

- 0 . 9 7  

- 0 . 9 8  

- 0 . ~  i , 1 1 i i ~ , i i 

0 2 4 6 8 10 

Tm~cycbs) 

Fig. 1. Orbital energy as a function of time, for the intensity I = 10 is W/cm 2 and frequency 
w = 0.33 au.(1 optical cycle = 4.6 x 10 -16 s.) 
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Fig. 2. Total energy as a function of time with the same condition as in fig. 1. 

under  the interaction with the external field. The a tom becomes less stable with 
time and the energy increases consequently as higher bound and cont inuum orbi- 
tals become admixed to the initial 1 s state. 

The ionization rates /~ obtained for various intensities and frequencies are 
shown in table 1 together with other known results based on FD methods.  These 
were calculated for long time using the formula - lnPls(t) = Ft, where Pls(t) is the 
1 s probability. Both FD and FE results agree very well. 

3.2. POLARIZABILITIES 

Most  previous calculations ofpolarizabilities of  atoms and small molecules, gen- 
erally rely on time independent iterations or perturbations, for example H [20- 

Table 1 
Ionization rates/" of He atom for various values of intensity I and frequency w. 

I (W/cm 2) w(au) F (s -1) F (s -1) 
this paper previous work 

4 x 1015 0.0428 0.47 x 1012 a) 

- 0.0856 0.9 x 1012 0.90 x 1012a) 
- 0.10 1.1 x 1012 
1015 0.0856 1.7 x 1013 1.9 x 1013 a) 

- 0.10 1.3 x 1013 

- 0.33 2.1 x 1013 2.6 x 1013 a) 

~) Ref. [6]. 
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23], He [24,25], noble gases [26-28], alkali metals [29] and small molecules [30,31]. 
Here we present the results of  calculations based on numerical solutions of  the 
TDSE, using FE basis sets. 

In general, the polarizability or dipole moment induced in an atom or molecule 
by a uniform external field E(t) can be expressed in a power series expansion [32], 

P(t) = x1E(t) + xaE(t) 3 + xsE(t)  5 + x7E(t) 7 + . . . ,  (30) 

where X1 = a, X3 = 7/3!,  X5 = 6/5! and X7 = (/7!,  etc., are the general nonlinear 
susceptibilities. The above expression applies to an atom which is spherically sym- 
metric. The coefficients a, % 6 and (usual ly  are termed hyperpolarizabilities. 

(i) Validity ofpower expansion (30) 
In the present case, we verify the validity of expression (30). We first test our 

new method for the hydrogen atom. Clearly, this perturbation expression remains 
valid when P(t) and E(t) are synchronized, i.e. in phase. We show this perfect syn- 
chronization for the H atom at the frequency w = 0.0428 au and intensity 
I = 1013 W/cm 2 in fig. 3. The external field used is that defined in eq. (3) with the 
pulse shape E0 (t) taken as 

linear increase (t~<l) optical cycle; 
E(t) = (31) 

E0 (t > 1) optical cycle, 

0.07 

0.08 

0.05 

0.04 

0.03 

0.02 
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0 

-0.01 

-.0.02 

--0.03 

-0.04 

-0.05 

- 0 . 0 6  

- 0 . 0 7  

- 0 . 0 8  T T l" T T l "r T 

7 9 11 13 

0.08 

Time(cyclee) 

15 

Fig. 3. Compar ison of  the dipole moment  (solid line) with the laser field (crossed line) at the intensity 
I = 1013 W / c m  2 and frequency w = 0.0428 au for the H atom. (1 optical cycle = 3.5 x 10 -15 s.) 
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where 1 optical cycle = (n/w) x 4.8 x 10 -17 s. However, at the intensity I = 1.75 
x 1014 W / c m  2 and frequency w = 0.2 au, one sees in fig. 4 complete dephasing of  
the polarizability P(t) with respect to the incident field due to high excitation and 
ionization. Detailed calculations show that the rate of  turn-on of  the laser field 
does not  affect this phenomenon.  The dephasing of the field induced polarizability 
clearly comes from real and virtual excitations, such that higher frequency compo- 
nents, with frequency greater than the external field are introduced. Similar calcu- 
lations of the dipole moment  of  the He a tom with time shows that the dipole 
momen t  and external laser field are also exactly in phase for the intensity 
I = 2.0 x 1014 W/cm2 and frequenciesw = 0.1 auand0.17  au. 

( ii) H-atom hyperpolarizabilities 
Equation (30) can be used to obtain the nonlinear optical susceptibilities )~2n+l 

in the intensity regime where the field-induced dipole moment  and the incident field 
are in phase. Alternatively, one can use the frequency-dependent polarizabilities, 
P(w) [32], which for plane wave fields (Eo(t) = E0) gives after Fourier  t ransforming 
eq. (30) 

P(w) = xxEo, e(3w) = x3E 3, (32) 

P(5w) = xsE~, P(7w) = xTETo . (33) 

0.6 

O.S 

OA 
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r r l r T 
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Fig. 4. Comparison of the dipole moment (solid line) with the laser field (crossed line) at the intensity 
14 2 I = 1.75 x 10 W / c m  and frequency w = 0.02 a u f o r t h e H a t o m .  (1 opt ica lcycle= 7.5 × 10 -16 s.) 
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We therefore used two methods to calculate the susceptibilities or hyperpolarizabil- 
ities. In the first time-dependent method, a singular value decomposition by a gen- 
eral linear square algorithm [33] was used for various frequencies and intensities. 
This is reported in table 2 with appropriate comparison to known results [34--37]. 
These time-dependent results (eq. (30)) are complemented by the frequency-depen- 
dent method (32), (33). 

We found in general that the time-dependent method was easier to apply, allow- 
ing one to go to lower intensities. Thus in the low intensity regime, a first fit at var- 
ious intensities to the truncated expression P( t )  = x 1 E  + x 3 E  3 gave values of X1 
and X3 which were found to extrapolate linearly to X01 and X03, the zero field limit. 
The residual R( t )  = P( t )  - x o l E  - X-3 E3 = x s E  5 q- X7 E7 was then fit by the same 
least squares method, so that values of X5 and X7 were obtained. It was found that 
the residual R( t )  was not in phase with the incident field, indicating sensitivity of 
these higher susceptibilities to RaN oscillations from high lying excitations. The 
Fourier method, on the other hand, necessitates a lot of calculations at high intensi- 
ties in order to get reasonable peak intensities at the harmonic frequencies 
(2n + 1)co, in addition to requiring many more field cycles in order to obtain well 
defined peaks. The results in table 2 were obtained from fitting 12 intensities 
between 0.5 and 5 x 1013 W/cm 2 for P(t )  and using 6 intensities between 1.5 and 
5 × 1013 W/cm 2 for P(co). The time-dependent and frequency-dependent results 
for c~, 7, ~ and ff were found to agree quite well between themselves and also with 
previous perturbative calculations, especially in the case of the lower hyperpolariz- 
abilities c~ and 7. For the higher parameters ~ and if, the time-dependent method 
generally gave results closer to the perturbative results. The two nonlinear hyperpo- 

Table 2 
Hyperpolarizabilities of the hydrogen atom. Units: au; (n) = I0n. 

w a '7 6 ~" 

Fitting method 
0.0428 4.32 1.64(3) 4(7) 
0.0656 4.40 2.20(3) 1(8) 

1(12) 
4(12) 

Fourier method 
0.0428 4.47 2.19(3) 4(7) 
0.0656 4.53 3.18(3) 2(8) 

6(12) 
2(13) 

Previous results 
0.0428 4.55 a) 1.69(3) ~) 1 (7) ~) 
0.0428 1.67(3) b) 1 (7) b) 
0.0656 4.62 c) 2.38(3) e) 
0.0656 2.48(3) b) 1(8) b) 
0.0 4.50 c) 1.33(3) c) 

~) Ref. [37]. 
b) Ref. [35]. 
c) Ref. [34]. 
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larizabilities, 6 and (, which involve sixth order and eighth order photon virtual 
transition respectively in perturbative treatments [32], are expected to be sensitive 
to highly excited states including continuum states. Such states are difficult to 
include in perturbative calculations but are automatically included in the present 
FE basis method. 

( iii) He-atom polarizabilities 
The nonlinear or hyperpolarizabilities a, 7, 6 and ( for He were obtained (table 

3) using the fitting method based on the time-dependent polarizability P(t), eq. 
(30). It was found that in order to obtain significant frequency dependent polariz- 
abilities P(~), eq. (32), intensities higher than 1014 W/cm 2 were required. The time- 
dependent procedure allowed therefore to obtain results in the lower intensity 
regime between 1013 and 1014 W / c m  2. The present results were obtained from cal- 
culations of P(t) at six intensities from 1013 to 2.0 × 1014 W/cm 2. Again the calcu- 
lated results of the hyperpolarizabilities were found to agree quite well with 
previous perturbative results for a, 7 and 6. We note that our value of ( is a new 
result. 

4. Conclus ion  

The present work shows that FE basis sets which are local in nature are ideally 
suited to treat time-dependent problems for time dependent perturbations which 
lead to high excitations into Rydberg and continuum states. Thus using a limited 
FE basis set expansion based on the optimal properties of Legendre polynomials 
[15], we have obtained ionization rates of H and He which agree with previous FD 
calculations. Furthermore, the laser field induced dipole moments calculated 
from the total time-dependent function enable one to extract high order nonlinear 

Table 3 
Hyperpolarizabilities of the helium atom. Units: au; (n) = 10 n. 

a 7 6 ( 

Fitting method 
0.10 1.43 60.0 4(5) 
0.17 1.46 130.0 2(6) 

Previous results 
0.086 90.6 a) 4(5) a) 
0.1312 141.6 a) 2(6) a) 
0.17 76.8 b) 3(6) b) 
0.0 1.38 c) 2.44 c) 10.6 c) 

3(9) 
2(10) 

a) Ref. [35]. 
b) Ref. [36]. 
c/Ref. [37]. 
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polarizabil i t ies ,  X2n+l (n>~O). These high order  polarizabil i t ies involve mul t ip le  
exci ta t ions  which will in principle involve c o n t i n u u m  states. Our  numer ica l  calcula-  
t ions o f  low order  hyperpolar izabi l i t ies  agree well wi th  previous per tu rba t ive  calcu- 
la t ions  and  offer  the possibil i ty o f  ca lcula t ing high order  ones since our  basis sets, 
which a l low for ca lcula t ion  o f  ioniza t ion  rates,  therefore  implici t ly con ta in  conti-  
n u u m  state  cont r ibut ions .  We  are cur ren t ly  extending the F E  m e t h o d  to the t ime-  
dependen t  q u a n t u m  mechanics  o fpo lye lec t ron ic  a toms  and  molecules.  
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